

The New MICRO Begins

さあ、次の驚きへ

<https://microtc.com>

最新の製品情報など
詳しくはこちらへ

株式会社 ミクロ研究所

〒151-0063 東京都渋谷区富ヶ谷1-33-14

TEL 03-3469-1133

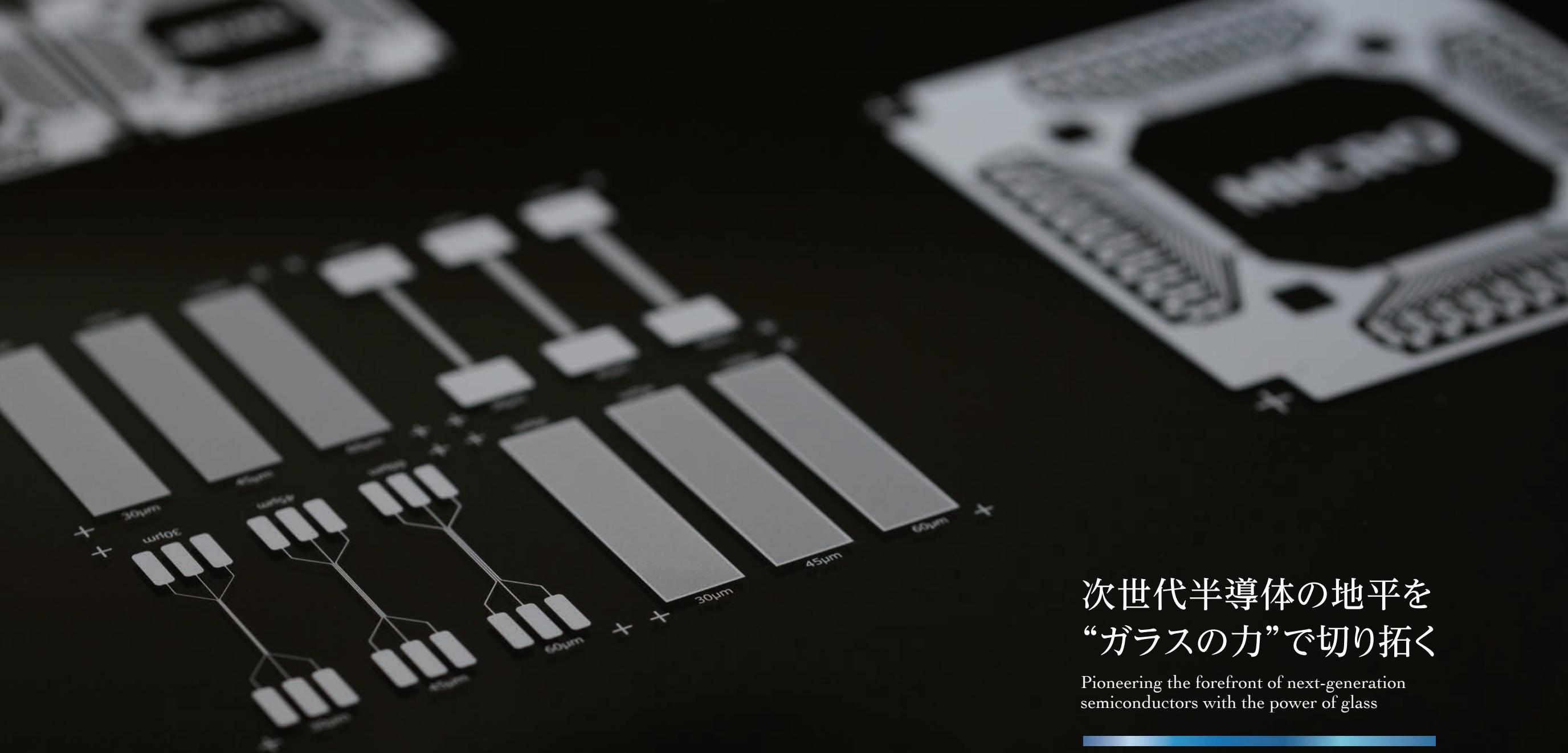
FAX 03-3469-1557

Mail sales@microtc.com

Micro technology co.,ltd.

1-33-14 Tomigaya Shibuya-ku, Tokyo 151-0063

TEL 03-3469-1133


FAX 03-3469-1557

Mail sales@microtc.com

先端パッケージングの
新時代は、ミクロから

MICRO for a new era of
advanced packaging

次世代半導体の地平を “ガラスの力”で切り拓く

Pioneering the forefront of next-generation
semiconductors with the power of glass

ミクロ技術研究所は、半導体分野で注目を集める
<ガラス製基板>の実用化に向けた研究開発に取
り組んでいます。様々な難しい技術課題を、これま
で長い時間をかけて培ってきた確かな技術力で克
服し、エレクトロニクス産業の新時代をめざします。

MICRO TECHNOLOGY is engaged in research and
development underpinning the practical application of glass
substrates, which are drawing attention in the semiconductor
field. We will overcome a plethora of demanding technical
challenges with our solid expertise cultivated over the years,
aiming to usher in a new era for the electronics industry.

ガラス基板を実用化するための 4つの課題とソリューション

Four challenges and solutions for commercializing glass substrates

**Challenge
課題 1** | **孔加工の均一性をどう実現する?**
How to achieve uniformity with holes?

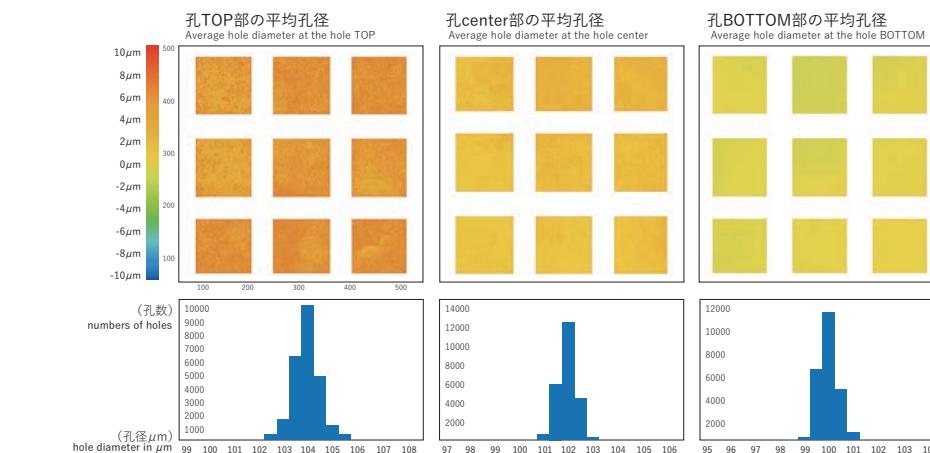
TGVでは孔の「径」「形状」「位置」のごくわずかな違いにより、後工程のメタライズ形成品質が大きく左右されます。

With TGV, even the slightest differences in hole diameter, shape and position greatly affect the quality of subsequent metallization processes.

**Micro's proposal!
ミクロの提案**

ミクロなら、きわめて高精度の加工により、**孔径、孔形状、孔位置の揃ったTGVの加工が可能**です。

At MICRO, we can process TGV with matched hole diameters, shapes and positions with extremely high-precision processing.


孔径測定位置(孔の断面図)
Hole diameter measurement positions
(hole cross-sectional view)

510×515サイズでの孔径の加工精度
Hole diameter processing accuracy for 510 x 515 size

孔TOP部の平均孔径
Average hole diameter at the hole TOP

孔center部の平均孔径
Average hole diameter at the hole center

孔BOTTOM部の平均孔径
Average hole diameter at the hole BOTTOM

次世代半導体として、従来の樹脂基板に代わる革新的な素材であるガラス基板を用いたパッケージに大きな期待が寄せられています。その実用化に向けて乗り越えなければならない技術的課題と、それに対するミクロのソリューション提案をご案内します。

Packaging using glass substrates—an innovative material to replace conventional resin substrates—are seen as offering great potential as next-generation semiconductors. Here are some of the technical challenges that need to be overcome for commercialization, and MICRO's proposed solutions to address them.

**Challenge
課題 2** | **ビア密度とアスペクト比は両立できる?**
Achieve both via density and aspect ratio?

先端パッケージでは、反りに強いガラスコアに対して、超微細な孔を高密度で加工することが求められます。その目安は、アスペクト比にして20:1であるとされています。

In advanced packaging, processing ultra-fine holes at high density into a warp-resistant glass core is required. The guideline for this aspect ratio is said to be 20:1.

**Micro's proposal!
ミクロの提案**

孔径Φ50μm、孔間ピッチ100μmの高密度TGV加工が可能。
また、アスペクト比20:1(ガラスの厚み1.0mm:孔径Φ50μm)の加工にも対応できます。

High-density TGV processing is possible with a hole diameter of $\phi 50 \mu\text{m}$ and a pitch between holes of $100 \mu\text{m}$. Processing with an aspect ratio of 20:1 (glass thickness 1.0 mm: hole diameter $\phi 50 \mu\text{m}$) is also available.

孔断面図
Hole cross-sectional view

ガラス厚み1.0mm
Glass thickness: 1.0 mm

孔断面写真
Hole cross-sectional photo

孔径Φ50μm
Hole diameter: $\phi 50 \mu\text{m}$

孔間ピッチ100μm
Pitch between holes

Challenge
課題
3

熱膨張によるクラックをどう防ぐ?

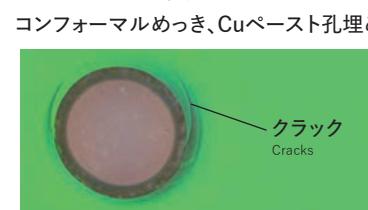
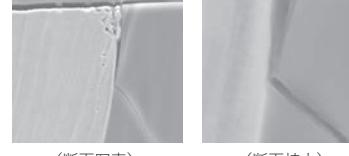
How to prevent cracks caused by thermal expansion?

従来のめっきや充填ペーストによる孔埋めでは、熱膨張や熱衝撃によるガラスクラックが発生しやすいという課題があります。

With conventional hole filling using plating or fill paste, there is the issue of glass cracks that tend to occur due to thermal expansion and thermal shock.

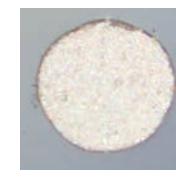
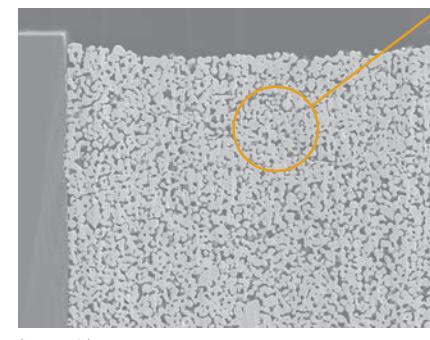
焼結金属を使用することで、熱衝撃が緩和され、結果としてクラックの発生を抑制します。

The use of sintered metal mitigates thermal shock, thereby suppressing cracks from occurring.



熱衝撃等によるクラック発生

Cracks occurring due to thermal shock

Test Conditions



Thermal shock test: -65°C → +125°C 200cycles

Test sample: Glass thickness 1.0mm hole size Φ100μm

(拡大写真)
Enlarged photo(拡大写真)
Enlarged photo(断面写真)
cross-sectional photo (断面拡大)
enlarged cross section

焼結金属 孔埋め

Sintered metal hole filling

(拡大写真)
Enlarged photo(断面写真)
cross-sectional photo

ポロシティ(空隙)の効果により
熱衝撃等によるクラックを
抑えることができる

※比抵抗 $9 \times 10^{-6} \Omega \cdot \text{cm}$
The effect of porosity (voids) can
suppress cracks caused
by thermal shock.

Challenge
課題
4

切断時のセワレへの対策は?

How to address edge cracks during cutting?

表面にビルドアップ層を形成したガラス基板を切断加工すると、切削面に応力が集中し、セワレが発生しやすくなります。

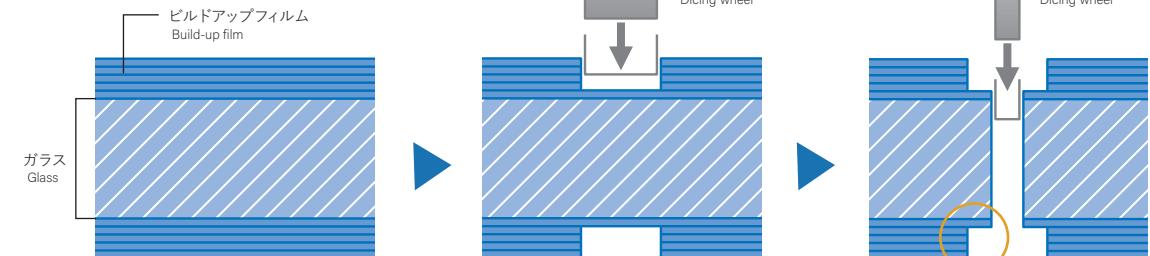
When cutting a glass substrate with a build-up layer formed on the surface, stress concentrates at the cut face, making edge cracks more likely.

独自技術(特許取得済み)により、ビルドアップ層の応力を緩和し、セワレのない切削加工を実現します。

With our proprietary technology (manufacturing patent already acquired), the stress in the build-up layer is alleviated to achieve cutting with no edge cracks.

セワレ発生基板

Substrate with edge cracks


セワレ対策基板

Substrate with edge-crack mitigation

応力緩和のための段差切削

stepped cutting for stress relief

分断する際に、ビルドアップフィルムを
完全に除去しないことで応力の開放を調整

Not completely removing the build-up film helps to
tune stress relief.

「ガラスへの微細配線加工」に挑む 力ギを握るのはAg焼結金属

Ag sintered metal holds the key to approaching
“fine wiring processing onto glass”

微細配線形成

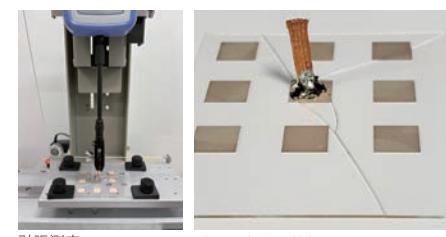
Fine wiring formation

導通素材にAg焼結金属を使用することで、電子回路の形成に求められる
「微細性」「密着性」「はんだヌレ性(はんだ付け性)」などの諸条件をクリアできます。

Using Ag sintered metal as the conductive material helps to meet the requirements for forming electronic circuits, such as fineness, adhesion, and solder wettability (solderability).

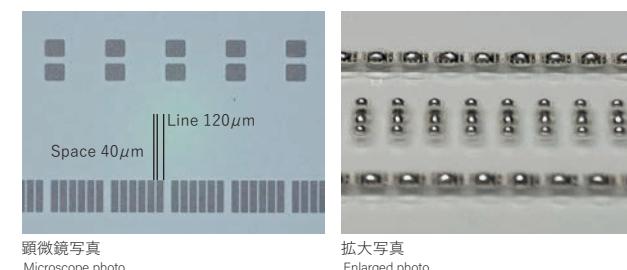
Ag焼結金属配線のガラス回路用基板

Glass circuit substrate with Ag sintered metal wiring


・最小線幅:L/S 30/30 μm
・比抵抗値: $3 \times 10^{-6} \Omega \cdot \text{cm}$
Minimum line width: L/S 30/30 μm
Resistivity: $3 \times 10^{-6} \Omega \cdot \text{cm}$

ガラスへの強固な密着性とはんだヌレ性

Strong adhesion to glass and solder wettability


・引張強度: 1.2kN/cm以上

Tensile strength: 1.2 kN/cm or higher

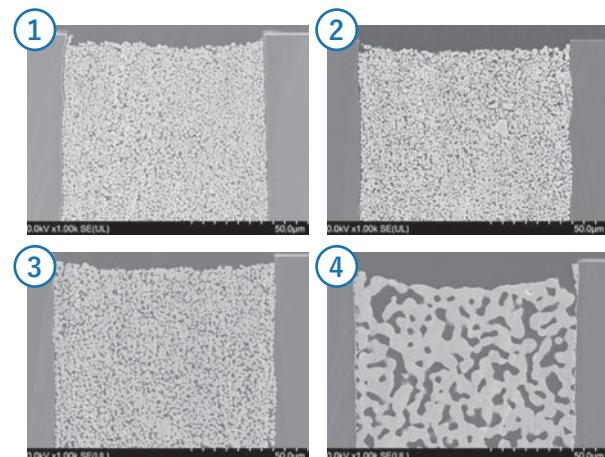
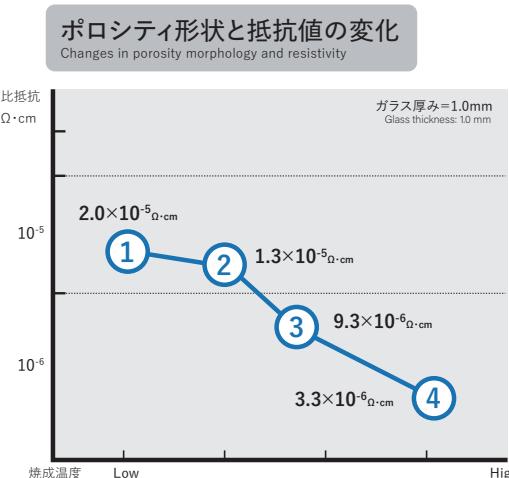
・はんだヌレ性

Solder wettability : Soldering to square

ガラス基板による半導体パッケージの実用化に向けて、ミクロでは、導通素材としてAg焼結金属を用いる新技術を開発しました。配線加工はもちろん、技術的課題があり困難とされてきた孔埋め加工についても、高い品質を実現することができます。

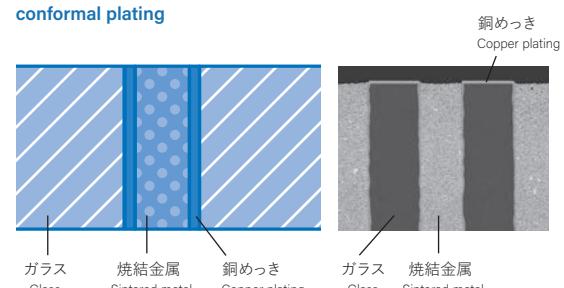
For the practical application of semiconductor packages using glass substrates, MICRO has developed a new technology that uses Ag sintered metal as the conductive material. This helps to achieve high quality, not only for wiring processing, but also for hole filling—which has been considered difficult due to technical challenges.

TGV孔埋め加工

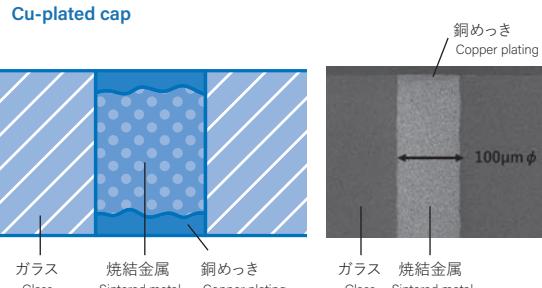


TGV filling processing

焼結金属に特有のポロシティ(粒子間に生じる空隙)を利用して、
熱膨張を原因とするTGVへのストレスを緩和。クラックの発生を防ぎます。

Leveraging the porosity characteristic of sintered metals (voids formed between particles) alleviates stress on TGV caused by thermal expansion. Prevents cracks from occurring.


焼成温度により抵抗値の変化とポロシティ形状の焼結度が異なる

Changes in resistance and the porosity shape sintering degree differ depending on the firing temperature.


Ag焼結金属とコンフォーマルめっきとのハイブリット構造

Hybrid structure of Ag sintered metal and conformal plating

Ag焼結金属とCuめっきキャップとのハイブリット構造

Hybrid structure of Ag sintered metal and Cu-plated cap

あらゆるニーズに対して 高い技術力で最適解を導き出す

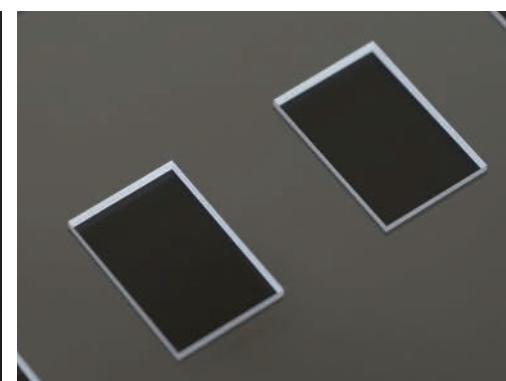
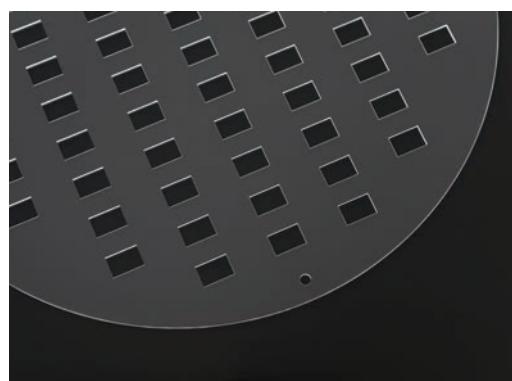
Delivering optimal solutions with advanced technical capabilities to meet broad range of requirements

驚愕のアスペクト比

Amazing aspect ratio

アスペクト比200:1(ガラスの厚み:1.0mm、孔径: $\phi 5\mu\text{m}$)、孔数100,000,000穴という、極めて高難度の孔あけ加工にも対応可能です。

Working on extremely high-difficulty hole drilling processing, such as an aspect ratio of 200:1 (glass thickness: 1.0 mm, hole diameter: $5\mu\text{m}$) and 100,000,000 holes is also our forte.

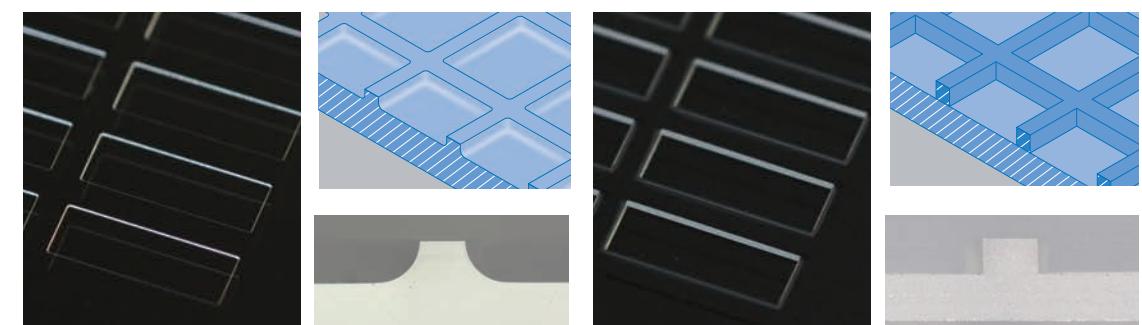
石英ガラスへのTGV加工

TGV processing in quartz glass

化学的に安定している石英ガラスは、一般的に加工が難しい素材であるとされています。ミクロでは、石英ガラスへのTGV加工にも対応できます。

Chemically stable quartz glass is generally regarded as a difficult material to process. MICRO is able to handle TGV processing in quartz glass

半世紀以上にわたり、ひたむきにガラス素材と向き合い続けてきたミクロには、お客様の多様なニーズに応えられる、確かな技術力と自信があります。以下にその一部をご紹介します。


With a history dedicated to glass materials spanning over half a century, MICRO has the proven technical strength and confidence to meet the diverse needs of our customers.

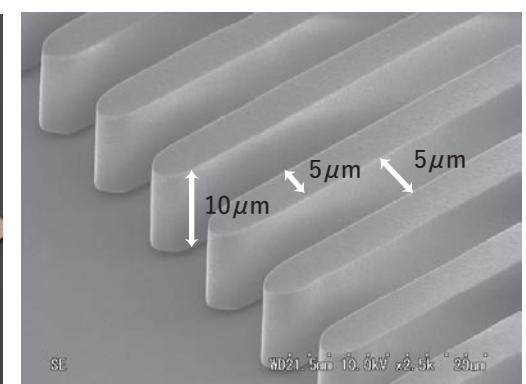
ガラスのキャビティ加工

Glass cavity processing

ミクロのガラスキャビティ加工には、「ケミカルエッチング加工によるキャビティ」と、「オープンキャビティ加工されたガラスと平板の接合加工によるキャビティ」の2種類があります。

MICRO offers two types of processing for glass cavities: "Cavities formed by chemical etching processing," and "Cavities formed by direct bonding of open-cavity processed glass and flat plate."

微細銅めっき配線基板(セミアディティブ法)


Fine copper-plated wiring substrate (semi-additive method)

セミアディティブ法と銅めっきを用いて、より微細な配線を形成することができます。

Even finer wiring can be formed using the semi-additive method and copper plating.

• L/S: 5/5 μm •めっき厚: 10 μm •配線密着: 0.8 kN/cm

L/S: 5/5 μm • Plating thickness: 10 μm • Wiring adhesion: 0.8 kN/cm

